State of California AIR RESOURCES BOARD ## Executive Order VR-102-D OPW Phase I Vapor Recovery System WHEREAS, the California Air Resources Board (ARB) has established, pursuant to California Health and Safety Code sections 39600, 39601 and 41954, certification procedures for systems designed for the control of gasoline vapor emissions during the filling of underground gasoline storage tanks, in its **CP-201**, *Certification Procedure for Vapor Recovery Systems at Gasoline Dispensing Facilities* (Certification Procedure) as last amended October 8, 2003, incorporated by reference in title 17, California Code of Regulations, section 94011; WHEREAS, ARB has established, pursuant to California Health and Safety Code sections 39600, 39601 and 41954, test procedures for determining the compliance of Phase I vapor recovery systems with emission standards; WHEREAS, OPW Fueling Components, Inc. (OPW) requested and was granted certification of the OPW Phase I Vapor Recovery System (OPW system) pursuant to the Certification Procedure by Executive Order VR-102-A, first issued on September 26, 2002, and reissued on October 10, 2002; WHEREAS, OPW requested a further modification to the certification to include additional components of the OPW system; WHEREAS, the requested modifications to the certification of the OPW system have been tested and evaluated pursuant to the Certification Procedure; WHEREAS, the Certification Procedure provides that the ARB Executive Officer shall issue an Executive Order if he or she determines that the vapor recovery system, including modifications, conforms to all of the applicable requirements set forth in the Certification Procedure; WHEREAS, G-01-032 delegates to the Chief of the Monitoring and Laboratory Division the authority to certify or approve modifications to certified Phase I and Phase II vapor recovery systems for gasoline dispensing facilities (GDF); and WHEREAS, I, William V. Loscutoff, Chief of the Monitoring and Laboratory Division, find that the OPW Phase I Vapor Recovery System, including modifications, conforms with all of the requirements set forth in the Certification Procedure, and results in a vapor recovery system which is at least 98.0 percent efficient as tested in accordance with test procedure **TP-201.1**, *Volumetric Efficiency for Phase I Systems*; NOW THEREFORE, IT IS HEREBY ORDERED that the OPW system is certified to be at least 98.0 percent efficient when installed and maintained as specified herein and in the following exhibits. Exhibit 1 contains a list of the certified components. Exhibit 2 contains the performance standards and specifications, typical installation drawings and maintenance intervals for the OPW system as installed in a gasoline dispensing facility (GDF). Exhibit 3 contains the manufacturing specifications. IT IS FURTHER ORDERED that compliance with the applicable certification requirements, rules and regulations of the Division of Measurement Standards of the Department of Food and Agriculture, the Office of the State Fire Marshal of the Department of Forestry and Fire Protection, and the Division of Occupational Safety and Health of the Department of Industrial Relations are made conditions of this certification. IT IS FURTHER ORDERED that OPW shall provide a warranty for the vapor recovery system and components to the initial purchaser and each subsequent purchaser within the warranty period. The manufacturer of components not manufactured by OPW shall provide a warranty for each of their components certified herein. This warranty shall include the ongoing compliance with all applicable performance standards and specifications, and shall comply with all warranty requirements in Section 9.2 of the Certification Procedure. OPW may specify that the warranty is contingent upon the use of trained installers. Copies of the warranty for the system and components shall be made available to the GDF owner or operator. IT IS FURTHER ORDERED that the certified OPW system shall be installed, operated, and maintained in accordance with the *ARB-Approved Installation, Operation and Maintenance Manual for the OPW Phase I Vapor Recovery System.* A copy of this Executive Order and manual shall be maintained at each GDF where a certified OPW system is installed. IT IS FURTHER ORDERED that equipment listed in Exhibit 1, unless exempted, shall be clearly identified by a permanent identification showing the manufacturer's name and model number. IT IS FURTHER ORDERED that any alteration in the equipment, parts, design, installation or operation of the system certified hereby is prohibited and deemed inconsistent with this certification unless the alteration has been submitted in writing and approved in writing by the Executive Officer or Executive Officer's delegate. IT IS FURTHER ORDERED that the following requirements be made a condition of certification. The owner or operator of the OPW system shall conduct, and pass, the following tests no later than 60 days after startup and at least once every three (3) years after startup testing, using the latest adopted version of the following test procedures: TP-201.3, Determination of 2 Inch WC Static Pressure Performance of Vapor Recovery Systems of Dispensing Facilities, TP-201.1B, Static Torque of Rotatable Phase I Adaptors and depending on the system configuration, either TP-201-1D, Leak Rate of Drop Tube Overfill Prevention Devices and Spill Container Drain Valves; or TP-201.1C, Leak Rate of Drop Tube/Drain Valve Assembly. Shorter time periods may be specified in accordance with local district requirements. Notification of testing, and submittal of test results, shall be done in accordance with local district requirements and pursuant to the policies established by that district. Alternative test procedures may be used if determined by the Executive Officer, in writing, to yield comparable results. Testing the P/V valve will be at the option of the local districts. If P/V valve testing is required by the district, the test shall be conducted in accordance with **TP-201.1E**, **Leak Rate and Cracking Pressure of Pressure/Vacuum Vent Valves**. IT IS FURTHER ORDERED that the OPW system shall be compatible with fuels in common use in California at the time of certification and any modifications to comply with future California fuel requirements shall be approved in writing by the Executive Officer or Executive Officer's delegate. IT IS FURTHER ORDERED that the certification of the OPW Phase I vapor recovery system is valid through September 30, 2006. IT IS FURTHER ORDERED that Executive Order VR-102-C, issued on January 9, 2004 is hereby superceded by this Executive Order. Executed at Sacramento, California, this 27^{+6} day of April 2004. William V. Loscutoff, Chief Monitoring and Laboratory Division #### Attachments: Exhibit 1 OPW Phase I Vapor Recovery System Equipment List Exhibit 2 Installation, Maintenance and Compliance Specifications Exhibit 3 Manufacturing Performance Standards and Specifications ## Executive Order VR-102-D OPW Phase I Vapor Recovery System # Exhibit 1 OPW Phase I Vapor Recovery System Equipment List | Equipment Manufacturer/Model Numbe | Equipment | Manufacturer/Model Number | |------------------------------------|-----------|---------------------------| |------------------------------------|-----------|---------------------------| Pressure/Vacuum Vent Valve Husky Model 4885, 2-Inch Threaded OPW 623V, 2 and 3-inch Threaded **Spill Containers and Covers** OPW TTT-21WWWX-YZZZ TTT indicates spill bucket material/cover type: (not required with sump configuration lid) 1 = Aluminum 1C = Cast iron 1SC = Sealable aluminum cover with an expandable seal. WWW Indicates bucket size: 00 = 5-gallon 15 = 15-gallon 00E = 7.5-gallon (deep bucket model) X indicates bucket base type C = Cast Iron No letter indicates composite base Y indicates drain valve or plug ZZZ indicates special configuration EVR = Standard SH = Self supporting container without ring and cover Pomeco 5XX XX indicates spill bucket material/cover type: 11= Composite base, bolt down cover 21= Composite base, roto-lock cover 61= Cast iron base, bolt down cover 71= Cast iron base, roto-lock cover **Sump Configuration Lid** ¹ Fibrelite FL-36 inch Replacement Drain Valve Kit OPW 1DK-2100 **Dust Caps** OPW 634TT-EVR (product) OPW 1711T-EVR (vapor) OPW 634LPC (product) OPW 1711LPC (vapor) Product Adaptor OPW 61SALP-EVR **Vapor Adaptor** OPW 61VSA-EVR Extractor Assembly ¹ OPW 233 Ball Float Vent Valve 1, 2 OPW 53VML OPW 30MV Jack Screw Kit OPW 61JSK-4400-EVR OPW 61JSK-4410 OPW 61JSK-44CB Face Seal Adaptor OPW FSA-400 OPW FSA-400-S **Drop Tube** OPW 61T (various lengths) **Drop Tube Overfill Prevention Device** 1 OPW 61SO-XXXC-EVR Where XXX = 400, 410, 412, 420 or 440 **Tank Bottom Protector** OPW/Pomeco 6111-1400-EVR Tank Gauge Port Components 1 Morrison Brothers 305XPA1100AKEVR (cap & adaptor kit) Morrison Brothers 305-0200AAEVR (replacement adaptor) Morrison Brothers 305XP-110ACEVR (replacement cap) Ever-Tite 4097AGBR Adaptor Ever-Tite 4097AGMBRNL Adaptor Ever-Tite 4097MBR Cap Veeder-Root 312020-952 (cap & adaptor) 1 Component optional for vapor recovery; may be required by other applicable regulations. ² The 53VML and 30MV includes both the 2" and 3" models _ Table 1 Components Exempt from Identification Requirements | Component Name | Manufacturer | Model Number | | |--|----------------------|-----------------------------|--| | Replacement Drain Valve | OPW | 1DK-2100 | | | Jack Screw | OPW | 61JSK-4400-EVR | | | | | 61JSK-4410 | | | | | 61JSK-44CB | | | Tank Gauge Port Component
(Cap and Adaptor) | Morrison
Brothers | 305XPA1100AKEVR (cap & | | | | | adaptor kit), 305-0200AAEVR | | | | | (replacement adaptor, and | | | | | 305XP-110ACEVR | | | | | (replacement cap). | | | Drop Tube | OPW | 61-T, 61SO | | | Face Seal Adaptor | OPW | OPW FSA-400 | | | | | OPWFSA-400-S | | ## **Executive Order VR-102-D OPW Phase I Vapor Recovery System** #### Exhibit 2 ## Installation, Maintenance and Compliance Standards and Specifications This exhibit contains the installation, maintenance and compliance standards and specifications applicable to an OPW system installed in a gasoline dispensing facility (GDF). #### **General Specifications** - 1. Typical installations of the OPW system are shown in Figures 2A and 2B. - 2. The OPW system shall be installed, operated, and maintained in accordance with the ARB-Approved Installation, Operation and Maintenance Manual for the OPW Phase I Vapor Recovery System. - 3. Any repair or replacement of system components shall be done in accordance with the *ARB-Approved Installation*, *Operation and Maintenance Manual for the OPW Phase I Vapor Recovery System*. - 4. The OPW system shall comply with the applicable performance standards and performance specifications in CP-201. Compliance of the system and all components shall be demonstrated in accordance with TP-201.3, Determination of 2 Inch WC Static Pressure Performance of Vapor Recovery Systems of Dispensing Facilities. - 5. There shall be at least one vapor recovery connection, throughout all Phase I deliveries, between the cargo tank and the GDF storage tank into which fuel is being delivered to ensure that vapor is returned to the cargo tank from the underground storage tank system. ## Pressure/Vacuum Vent Valves For Storage Tank Vent Pipes - 1. No more than three certified pressure/vacuum vent valves (P/V valves) listed in Exhibit 1 shall be installed on any GDF underground storage tank system. - 2. Compliance determination of the following P/V valve performance specifications shall be at the option of the districts: - a. The leak rate of each P/V valve shall not exceed 0.05 cubic feet per hour (CFH) at 2.00 inches of H₂O positive pressure and 0.21 CFH at 4.00 inches negative pressure as determined by **TP-201.1E**, *Leak Rate and Cracking Pressure of Pressure/Vacuum Vent Valves* - b. The positive pressure setting is 3.0 ± 0.5 inches of H₂O and the negative pressure setting is -8.0 ± 2.0 inches of H₂O as determined by **TP-201.1E**, Leak Rate and Cracking Pressure of Pressure/Vacuum Vent Valves. - 3. A manifold may be installed on the vent pipes to reduce the number of potential leak sources and P/V valves installed. Vent pipe manifolds shall be constructed of steel pipe or an equivalent material that has been listed for use with gasoline. If a material other than steel is used, the GDF operator shall make available information demonstrating that the material is compatible for use with gasoline. One example of a typical vent pipe manifold is shown in Figure 2C. This shows only one typical configuration; other manifold configurations may be used. For example, a tee may be located in a different position, or fewer pipes may be connected, or more than one P/V valve may be installed on the manifold. - 4. The vent pipe manifold shall be installed at a height not less than 12 feet above the grade used for gasoline cargo tank delivery operations and shall conform to all applicable regulations. - 5. Each P/V valve shall have permanently affixed to it a yellow or gold-colored label with black lettering stating the following specifications: Positive pressure setting: 3.0 ± 0.5 inches H_2O Negative pressure setting: -8.0 ± 2.0 inches H_2O Positive Leakrate: 0.05 CFH at 2.0 inches 20Negative Leakrate: 20.21 CFH at 20.0 inches 20.0 ## Rotatable Product and Vapor Recovery Adaptors - 1. Rotatable product and vapor recovery adaptors shall be capable of at least 360-degree rotation and have an average static torque not to exceed 108 pound-inch (9 pound-foot). Compliance with this requirement shall be demonstrated in accordance with the latest adopted version of **TP-201.1B**, **Static Torque of Rotatable Phase I Adaptors**. - 2. The vapor adaptor poppet shall not leak when closed. Compliance with this requirement may be verified by the use of commercial liquid leak detection solution, or by bagging, when the vapor containment space of the underground storage tank is subjected to a non-zero gauge pressure. (Note: leak detection solution will detect leaks only when positive gauge pressure exists.) ## **Vapor Recovery and Product Adaptor Dust Caps** Dust caps with intact gaskets shall be installed on all Phase I tank adaptors. ## **Spill Container Drain Valve** The spill container drain valve shall be configured to drain liquid directly into the drop tube and shall be isolated from the underground storage tank ullage space. The leak rate of the drain valve shall not exceed 0.17 CFH at 2.00 inches H₂O. Depending on the presence of the drop tube overfill prevention device, compliance with this requirement shall be demonstrated in accordance with the latest adopted version of either TP-201.1D, Leak Rate of Drop Tube Overfill Prevention Devices and Spill Container Drain Valves; or TP-201.1C, Leak Rate of Drop Tube/Drain Valve Assembly. ### **Drop Tube Overfill Prevention Device** - 1. The Drop Tube Overfill Prevention Device (overfill device) is designed to restrict the flow of gasoline delivered to the underground storage when liquid levels exceeds a specified capacity. The overfill device is not a required component of the vapor recovery system, but may be installed as an optional component. Other regulatory requirements may apply. - The leak rate of the overfill device shall not exceed 0.17 CFH at 2.00 inches H₂O when tested as in accordance with the latest adopted version of TP-201.1D, Leak Rate of Drop Tube Overfill Prevention Devices and Spill Container Drain Valves. ## Face Seal Adaptor The Face Seal Adaptor shall provide a machined surface on which a gasket can seal and ensures that the seal is not compromised by an improperly cut or improperly finished riser. A Face Seal Adaptor shall be installed on the following required connections. As an option, the adaptor may be installed on other connections. - a. Product Spill Container (required) - b. Tank Gauging Components (required) - c. Vapor Recovery Spill Container (optional) - d. Rotatable Adaptors (optional) ### **Ball Float Vent Valve** A Ball Float Vent Valve (ball float) is designed to restrict the flow of a gasoline delivery by using back pressure when the storage tank levels exceed a specified level. If installed for overfill prevention, a ball float must be installed at each vapor and vent connection to the tank. Ball floats are not required components of the vapor recovery system, but may be installed as optional components for vapor recovery; other requirements may apply. ## **Vapor Recovery Riser Offset** - 1. The vapor recovery tank riser may be offset from the tank connection to the vapor recovery Spill Container provided that the maximum horizontal distance (offset distance) does not exceed twenty (20) inches. One example of an offset is shown in Figure 2D. - 2. The vapor recovery riser shall be offset up to 20 inches horizontal distance with use of commercially available, four (4) inch diameter steel pipe fittings. #### **Tank Gauge Port Components** The tank gauge adaptor and cap are paired. Therefore, an adaptor manufactured by one company shall be used only with a cap manufactured by the same company. ## **Connections and Fittings** All connections and fittings not specifically certified with an allowable leak rate shall not leak. The absence of vapor leaks may be verified with the use of commercial liquid leak detection solution (LDS), or by bagging, when the vapor containment space of the underground storage tank is subjected to a non-zero gauge pressure. (Note: leak detection solution will detect leaks only when positive gauge pressure exists). ## **Maintenance Records** Each GDF operator/owner shall keep records of maintenance performed at the facility. Such record shall be maintained on site or in accordance with district requirements or policies. The records shall include the maintenance or test date, repair date to correct test failure, maintenance or test performed, affiliation, telephone number and name of individual conducting maintenance or test. An example of a Phase I Maintenance Record is shown in Figure 2E. Table 2-1 Gasoline Dispensing Facility Compliance Standards and Specifications | Component | Test Method | Standard or Specification | |---|---|--| | Rotatable Phase I
Adaptors | TP-201.1B | Minimum, 360-degree rotation
Maximum, 108 pound-inch average static
torque | | Overfill Prevention
Device | TP-201.1D | ≤0.17 CFH at 2.00 in. H ₂ O | | Spill Container Drain
Valve | TP-201.1C or
TP-201.1D | ≤0.17 CFH at 2.00 in. H ₂ O | | P/V Valve ^{1.} | TP-201.1E | Positive pressure setting: 3.0 ± 0.5 in. H_2O
Negative pressure setting: -8.0 ± 2.0 in. H_2O
Positive Leakrate: 0.05 CFH at 2.0 in. H_2O
Negative Leakrate: 0.21 CFH at -4.0 in. H_2O | | Gasoline Dispensing Facility | TP-201.3 | As specified in TP-201.3 and/or CP-201 | | Connections and fittings certified without an allowable leak rate | Leak
Detection
Solution or
Bagging | No leaks | Table 2-2 Maintenance Intervals for System Components | Manufacturer | Component | Maintenance Interval | |-------------------|-------------------------------------|----------------------| | Husky | Pressure/Vacuum Vent Valve | Annual | | Morrison Brothers | Tank Gauge Components | Annual | | OPW | Pressure/Vacuum Vent Valve | Annual | | OPW | Dust Caps (all models) | Annual | | OPW | 61-T Straight Drop Tube | Annual | | OPW | Ball Float (all models) | Every 3 years | | OPW | Rotatable Phase I Adaptors | Annual | | OPW | Drop Tube Overfill Prevention Valve | Annual | | OPW\Pomeco | Spill Containers (all models) | Annual | _ ^{1.} Compliance determination is at the option of the district. Figure 2A Typical Product Installation Using OPW System Figure 2B Typical Vapor Installation Using OPW System Figure 2C Typical Vent Pipe Manifold **Note:** This shows only one typical configuration; other manifold configurations may be used. For example, a tee may be located in a different position, or fewer pipes may be connected, or more than one P/V valve may be installed on the manifold. Figure 2D Typical Vapor Recovery Riser Offset **Note:** This figure represents one instance where a vapor recovery riser has been offset in order to construct a two-point Phase I vapor recovery system. The above figure illustrates an offset using a 90-degree elbow. However, in some instances, elbows less than 90 degrees may be used. All fittings and pipe nipples shall be 4-inch diameter similar to those of the spill container and rotatable Phase I adaptors in order to reduce back pressure during a gasoline delivery. Figure 2E Example of a GDF Phase I Maintenance Record | Date of
Maintenance/
Test/Inspection/
Failure | Repair
Date To
Correct
Test
Failure | Maintenance/Test/Inspection
Performed and Outcome | Affiliation | Name of Individual
Conducting
Maintenance or Test | Telephone
Number | |--|---|--|-------------|---|---------------------| ## Executive Order VR-102-D OPW Phase I Vapor Recovery System # Exhibit 3 Manufacturing Performance Standards and Specifications The OPW system and all components shall be manufactured in compliance with the performance standards and specifications in CP-201, as well as the requirements specified in this Executive Order. All components shall be manufactured as certified; no change to the equipment, parts, design, materials or manufacturing process shall be made unless approved in writing by the Executive Officer. Unless specified in Exhibit 2 or in the *ARB-Approved Installation, Operation and Maintenance Manual for the OPW Phase I Vapor Recovery System*, the requirements of this section apply to the manufacturing process and are not appropriate for determining the compliance status of a GDF. ### Pressure/Vacuum Vent Valves for Storage Tank Vent Pipes - 1. Each pressure/vacuum vent valve (P/V valve) shall be 100 percent performance tested at the factory for cracking pressure and leak rate at each specified pressure setting and shall be done in accordance with the latest adopted version of TP-201.1E, Leak Rate and Cracking Pressure of Pressure/Vacuum Vent Valves. Each P/V valve shall be shipped with an card or label stating the performance specifications listed below, and a statement that the valve was tested to, and met, these specifications. - a. The pressure settings for the P/V valve Positive pressure setting of 3.0 ± 0.5 inches H_2O . Negative pressure setting of -8.0 ± 2.0 inches H_2O . - The leak rate for each P/V valve, including connections, shall not exceed: 0.05 CFH at 2.0 inches H₂O. 0.21 CFH at -4.0 inches H₂O. - 2. Each P/V valve shall have permanently affixed to it a yellow or gold label with black lettering listing the positive and negative pressure settings specified above. The lettering of the label shall have a minimum font size of 20. ### **Rotatable Product and Vapor Recovery Adaptors** - 1. The rotatable product and vapor recovery adaptors shall not leak. - 2. The product adaptor cam and groove shall be manufactured in accordance with the cam and groove specifications shown in Figure 3A of CP-201. - 3. The vapor recovery adaptor cam and groove shall be manufactured in accordance with the cam and groove specifications shown in Figure 3B of CP-201. - 4. Each product and vapor recovery adaptor shall be 100 percent performance tested at the factory. Each adaptor shall have affixed to it a card or label stating the performance specification listed below, and a statement that the adaptor was tested to, and met, the following specifications. - a. The average static torque for the rotatable adaptor shall not exceed 108 pound-inch average static torque when tested in accordance with the latest adopted version of **TP-201.1B**, **Static Torque of Rotatable Phase I Adaptors.** - b. The rotatable adaptor shall be capable of rotating at least 360 degrees when tested in accordance with the latest adopted version of **TP-201.1B**, **Static Torque of Rotatable Phase I Adaptors**. #### **Spill Container and Drain Valves** Each Spill Container Drain Valve shall be 100 percent performance tested at the factory. Each Spill Container Drain Valve shall have affixed to it a card or label stating the performance specifications listed below, and a statement that the valve was tested to, and met, the following performance specification. a. The maximum leakrate shall not exceed 0.17 CFH at 2.00 inches H₂O when tested in accordance with the latest adopted version of either TP-201.1C, Leak Rate of Drop Tube/Drain Valve or TP-201.1D, Leak Rate of Drop Tube Overfill Prevention Devices and Spill Container Drain Valves. #### **Drop Tube Overfill Prevention Device** Each Drop Tube Overfill Prevention Device shall be 100 percent performance tested at the factory to verify that it does not exceed the maximum allowable leak rate. Each Drop Tube Overfill Prevention Device shall have affixed to it a card or label stating the performance specifications listed below, and a statement that the device was tested to, and met, the following performance specification. a. The maximum leak rate shall not exceed 0.17 CFH at 2.00 inches H₂O when tested in accordance with the latest adopted version of **TP-201.1D**, **Leak Rate of Drop Tube Overfill Prevention Devices and Spill Container Drain Valves.** Table 3-1 Manufacturing Component Standards and Specifications | Component | Test Method | Standard or Specification | |--------------------------------|---------------------------|---| | Rotatable Phase I
Adaptors | TP-201.1B | Minimum, 360-degree rotation Maximum, 108 pound-inch average static torque | | Rotatable Phase I
Adaptors | Micrometer | Cam and Groove Specifications (CP-201) | | Overfill Prevention
Device | TP-201.1D | ≤0.17 CFH at 2.00 inches H ₂ O | | Spill Container Drain
Valve | TP-201.1C or
TP-201.1D | ≤0.17 CFH at 2.00 inches H ₂ O | | Pressure/Vacuum Vent
Valve | TP-201.1E | Positive Pressure: 3.0 ± 0.5 inches H_2O
Negative Pressure: -8.0 ± 2.0 inches H_2O
Leak rate: ≤ 0.05 CFH at $+2.0$ inches H_2O
Leak rate: ≤ 0.21 CFH at -4.0 inches H_2O |